Keeping Time
with Python

How to Train Your Robot
Chapter 2

Brandon Rohrer

Copyright © 2022 Brandon Rohrer
All canine photos courtesy Diane Rohrer
All rights reserved

How to Train Your Robot

Chapter 1:
Can't Artificial Intelligence
Already Do That?

Chapter 2:
Keeping Time with Python

About This Project

How to Train Your Robot is a long term side project. I've
been working on it for 20 years, and I don't know if I'll
ever finish it. But I find it deeply satisfying to share
progress as I go, and who knows, maybe someone will
find it useful. This is already the second chapter. I'm
pretty pleased with that, because it means that the
project has a quantifiable momentum.

Onward we go.
Brandon

Boston, USA
October 18, 2022

Keeping Time with Python
Chapter 2

In which we synchronize computers
with the rest of the world.

In chapter 1 we stood on top of a high hill, pointed at
the horizon, and declared a destination: sample-efficient
human directed reinforcement learning. Now we start
down the path, putting one foot in front of the other.
Before, we were surveying vast landscapes and distant
mountain ranges. Now we're going to have to pay
attention to twists in the trail and pebbles in our shoes.
But it’s all part of the same journey.

The Wall Clock

As long as we stay inside the computer, time is not too
terribly difficult to manage. Everything happens in
lockstep, synchronized to the nanosecond by a master

How to Train Your Robot

clock. There are some subtleties. Because the processor
has to juggle so many different activities with so many
different priorities, sometimes programs get neglected
and even freeze entirely, but thankfully this is the
exception rather than the rule.

This bubble of control is still in place when working
with simulated robots. In a simulation, all the pushing
and pulling between particles and linkages that lead to
forces and accelerations are represented by a lot of math,
expressed in computer code. But however complex the
calculations needed to advance the simulation physics
from one time step to the next, however tedious the
computation and planning of the controller, each step
can be made to wait patiently for the other. As far as the
processes are concerned, time is elastic. It can be
stretched or compressed to fit the calculations.

One of the things that makes robotics hard is that it
takes place outside of the computer's realm, out in the
rest of the world. Sometimes this is called the "real
world", but that implies that the transistors and
electrons inside the CPU are imaginary. It’s also called
the "physical world", but that label doesn’t sit quite right
for the same reason. Probably the most descriptive term
I've heard for this is "meatspace”, suggesting that it is a
realm where interaction with bulk biological tissue
becomes possible. But instead of these, we’ll go with a

Keeping Time with Python

semantic wrecking ball and just use the term "world" to
describe anything that happens outside of the signals
governed by the CPU clock.

In the world wild things can happen. Batteries drain.
Lightning strikes. Earthquakes shake. Monkey wrenches
get dropped into gears. A robust approach to robot
control will be able to fail gracefully when any of these
happen. But one thing that does not ever change, even
on the weirdest day, is the progression of time. When
working with robots, world time is absolute.

When we have a computer controller driving a robot in
the world, we no longer have the luxury of ignoring the
wall clock. If code in a critical control loop takes too
long to run, it may not send instructions on time. The
robot's performance may degrade or it might fail
spectacularly, damaging itself or someone else. If sensor
information isn’t read in on a regular cadence, the robot
may wrongly estimate how fast things are changing and
lose the ability to respond appropriately. It might even
miss important events entirely. When a computer is
taking in inputs, and more importantly, when it is
sending out commands, it needs to be able to keep time
with the world, or at the very least be aware of when it’s
not keeping up.

How to Train Your Robot

The critical role of time and timing makes it a
cornerstone of everything that comes after. It’s
important enough to get right that we're going to
dedicate a chapter to it. And it’s foundational enough
they were going to tackle it before we build anything
else.

Measuring the Passage of Time

It's worthwhile to take a minute and get very clear
about how we are going to measure time. A tried and
true method is to find something that happens on a
cycle and count it. The classic example of this is the sun
passing overhead. This physical phenomenon happened
consistently enough that it made a reliable unit of
measure. When subdivided into hours, minutes, and
seconds and agglomerated into months, years, and
centuries, it provided a collection of measurement scales
suitable for almost every purpose.

Using the principle of counting cycles, enterprising
inventors found they could also use pendulums to keep
time for clocks and metronomes. Rather than a 24-hour
cycle, pendulums had cycles measured in seconds. A
weight attached to a stick will swing back and forth
with a highly repeatable number of swings per minute.
Surprisingly, this frequency is the same, whether the
swings are tiny or wide. If you stop to think about it, it's

Keeping Time with Python

not at all obvious that this should be the case. Shouldn't
a pendulum that is barely moving oscillate faster than
one that is really pumping? Or slower? Physics says no
(at least until the amplitude gets large enough that the
linear approximation sin(x)=x breaks down). Fortunately
for time-keepers, this insensitivity of oscillation
frequency to amplitude makes pendulums a fantastic
tool for time keeping. Curiously, this phenomenon is
also exploited by parents pushing two year olds on
swings. A child will need pushing just as often, no
matter how high they're going. This predictability lets
the parent push with one hand while doomscrolling
with the other.

Another great feature of pendulums is that their
frequency is adjustable. Moving the weight closer to the
pivot makes the pendulum swing faster, and sliding it
further down the stick will make it swing more slowly.
Adding a small gravity-fed or spring-driven kick at the
end of each swing will keep that pendulum going at a
precise rate for as long as someone is willing to keep the
spring wound or the weights re-hung. Carefully
adjusting the frequency of oscillation enables
mechanical clocks to keep pretty good time and help
pianists to play Mozart's sonatas at the tempo he
intended.

How to Train Your Robot

Tail wags were briefly considered as a way to track time, but were
abandoned due to being distractingly adorable and notoriously
unreliable.

Then came computers. At their heart is an oscillator, a
small crystal that wiggles ever so slightly millions of
times per second. It is similar to a tiny pendulum, but
instead of swinging back-and-forth, it rings like a
champagne flute struck with a cake fork. And instead of
getting nudged by a spring driven gear, it gets gently
kicked at the extreme of each vibration with a small
voltage pulse. This hypercaffeinated tick-tock is also
extremely regular, thanks to the laws of physics. It gives
us another way to represent time. We can turn on the

Keeping Time with Python

computer and start counting the number of oscillations
in the clock crystal. If a program needs to communicate
to another program a time at which something
happened, or should happen, the number of oscillator
cycles is a precise unit of measure that means the same
thing to both of them.

This system works great until the computer needs to do
something according to a wall clock. If I have an alarm
clock app, I want to be able to set a wake up for 6:15
AM, rather than figure out how many billions of
oscillator cycles have elapsed between the time I turned
the computer on and when I want the alarm to sound.
This problem is solved by having the computer check
the Internet when it's powered up to find out what time
all the humans think it is. Then, knowing how many
oscillator cycles it goes through in a second, it can inch
its own internal copy of the wall clock forward. This
arrangement essentially lets the computer track the
passage of the sun overhead with an immense amount
of precision. When I set an alarm for 6:15 AM, I know
it’s going to go off right at 6:15. If my computer tells me
an email arrived at 2:12 PM and 17 seconds, I can have a
high degree of confidence that is exactly what my wall
clock said when the email hit my mail server.

This approach works great for computers that are close
to each other. It allows a computer to report the wall

How to Train Your Robot

clock time for any event, past or planned, with
millisecond accuracy. Nearby computers can compare
notes and can agree whether one thing happened before
another.

However another piece of complexity now steps
forward. It was always there, but ironically, computers'
ability to reach around the world in less than a second
brought it to the fore. There are lots of wall clocks in the
world. If my wall clock says 10 AM, that doesn’t tell me
what your wall clock says. If your computer tells me an
event happened at 5:55 PM, I could not tell you whether
that happened before or after an event that my
computer reported at 6 PM. Wall clocks can only be
compared if you know where they are.

The nuances of dealing with time zones are famously
tangled and difficult to get correct. They are a running
joke among software developers. Every time you think
you have a good set of rules for handling time zones,
one more exception pops up: irregular time zone
boundaries, daylight savings time, the International
Date Line, non-contiguous time zones, time zones offset
by thirty minutes, or fifteen, time zones tied to shifting
laws and political boundaries. Accurately comparing
two wall clocks is an exercise in logic, history, politics,
and patience. It requires knowing where both of the

Keeping Time with Python

clocks are, sometimes with a high level of accuracy. It is
not to be undertaken lightly.

A commonly accepted way to get around this mess is to
pick one time zone for all computer programs
everywhere in the world and only convert to the local
time zone when necessary. This trick isn’t without its
hiccups, but it works surprisingly well. Time in
computer programs is most often represented in UTC (a
modified acronym for Coordinated Universal Time)
which matches the local time in London during winter,
when daylight savings time is not in force. With this
common representation, computers regain their ability
to compare events no matter where they’re located in
the world. It short circuits the chaos introduced by our
patchwork of time zones. It works well, because
computers could not care less whether it’s sunny
outside at 12 PM or dark at 2 AM. They experience no
cognitive dissonance from disconnecting time of day to
position of the sun.

There’s one other innovation that makes working with
time in code much easier: representing it as a floating
point number. If you try to calculate what day of the
month it will be 600,000 hours from now, you quickly
discover that dates and times are an arithmetic
nightmare. The hack to simplify this is the UNIX Epoch.
It is a collective delusion that time began in 1970.

How to Train Your Robot

January 1, 1970 at 12:00:00 AM UTC to be exact. With
that datum in place, it becomes possible to define UNIX
time' as the number of seconds since the UNIX Epoch.
Any date, any time can be represented as a simple
floating point number. (As long as it wasn’t during the
60s. Or before that.) This universal, arithmetic-friendly
representation of time is the standard for software
developers worldwide. It’s considered best practice to
keep all of your time representations in UNIX time,
converting to a local human readable date and time only
when necessary for the benefit of human users.

There is yet one more layer of the onion to peel back,
one step deeper into the rabbit hole we need to descend,
before we complete our side trip into time
measurement. Coordinating CPU clocks with Internet
wall clocks works pretty well, but still allows some
amount of error. It takes time for distant computers to
talk to each other, which introduces some delay in
synchronizing them, but a system called the network
time protocol (NTP) does a robust job of accounting for
that. It’s usually off by no more than a few milliseconds,
and only very occasionally by much more than that.

More disruptive still are leap seconds. It turns out that
the rotation of the earth and the passage of the sun

through the sky is not quite so regular as we originally
thought. The oceans sloshing about as they are tugged

Keeping Time with Python

on by the moon dissipate a non-negligible amount of the
earth's rotational momentum. The world turns a little
slower every day. The net effect is that approximately
once every 800 days an extra second needs to be added
to a day in order to keep the passage of the sun and our
wall clocks in precise synchronization. UNIX time
makes a concession to the solar cycle here, and ignores
leap seconds entirely. This decision gives Unix time the
convenient property that 12 AM UTC on any given day
will be evenly divisible by 86,400 seconds. It artificially
enforces a fixed number of seconds in a day. This also
means once every 2 1/2 years there is a second just
before midnight and another just after midnight that are
referred to by the same UNIX times. For a UNIX time
during that interval, it's impossible to determine which
of the two seconds it is referring to. If an event happens
during that two second period, Unix time can't ensure
that it will be correctly interpreted. This ambiguity is
likely to offend anyone with a sense of rigor, and it
shows that we haven't entirely escaped the primacy of
the natural world in governing our measurement of
time.

Between leap seconds and wall clock updates from NTP,
our computers' internal wall clocks (called system
clocks) will fluctuate somewhat, probably on the order
of milliseconds, but almost never more than a second.
For time stamping emails and setting alarms, this is

How to Train Your Robot

perfectly fine. However, for some applications this is
unacceptable. For example, in robotics it is common
practice to sense position frequently, say several
hundred times per second, and use it to estimate
velocity. To do this well, we have to know to a high
degree of accuracy how much time has elapsed between
each measurement. Our jumpy system clock will not
give us this.

For sensitive time operations like these, where precise
time intervals matter much more than synchronizing
with distant systems, we can fall back to counting
cycles of our CPU clock. This is called a monotonic
clock, because the time stamp of any given event is
always guaranteed to be greater than those of all of the
events that came previously. This guarantee doesn’t
exist in a world where leap seconds and clock
adjustments can happen. Monotonic clocks have no
reference, that is, we don't know exactly what time it
was when they started counting. They are not useful for
telling us what’s going on anywhere outside of our CPU
or giving us any notion of what our wall clock says. But
they are great at strictly ordering and measuring
internal events.

That catches us up with everything we need to know
about time to build kick-ass robots. If you are sad that
this rabbit hole has come to an end, never fear. I invite

Keeping Time with Python

you to explore three other tunnels: 1) propagation delay
in integrated circuits, 2) relativistic effects of moving
GPS satellites, and 3) strontium clocks. At the sub
nanosecond level, you have to start worrying about how
long it takes an electron to travel a few inches down a
wire and also about how the notion of time is
fundamentally tied to position and starts to distort
when you are very far away or moving very fast. And if
you want to measure things happening that quickly,
you're going to need an extremely accurate clock. But
we have what we need for our robotics journey, so we'll
pack up and move on.

Let’s write some code!

We're going to be working exclusively in Python. A lot
of robotics work is done in C++, because it gives you a
lot of low level control, and it’s screaming fast. Coding
in C++ is a little bit like wielding a lightsaber. In the
right hands it can be quite effective, but when you're
just starting off you're more likely to cut off your own
foot.

Likewise, a lot of scientific computation libraries are
implemented in C and C++ because of their raw speed.
Working in these has a steeper learning curve, and using
them would make this project less accessible to

How to Train Your Robot

beginners. And to be frank, my own C coding
experience is now a distant memory.

Luckily, we don’t take too big of a hit working in
Python. For robotics, even the native C++ code is often
deployed with a Python wrapper. This leaves all of the
grittyness wrapped up tightly in a box and gives us
some nice Python handles to grab it by. Similarly,
scientific computation in Python is greatly accelerated
thanks to libraries like numpy, which has highly
optimized C code under the hood for common
numerical operations, and numba, which will compile
your Python code down to C and make it run nearly as
fast as raw C code.

It has been said that Python is the second best language
for everything, and we are going to test this assertion. A
far reaching project like this one will eventually touch
many different computing applications: robotics and
hardware integration, scientific computation and linear
algebra, visualization and animation, sensing and
communication, process monitoring and coordination.
In addition to all these, I have the goal to make this
work as broadly understandable and understood as
possible. Python was designed for readability. It doesn’t
always succeed, but compared to the alternatives it does
an exceptional job.

Keeping Time with Python

I've set this up so that if you choose to, you can easily
fetch and run this code yourself. There’s no better way
to get a feel for how things work than to play with them.
Run it, change it, run it again. Break it and fix it. Put
your own spin on it. All of the scripts we walk through
here you can find on GitHub. The code is available at

brandonrohrer.com /httyr2files.

My coding explanations assume that you have a little bit
of Python experience. That said, if you are new to
Python and want to learn, don’t be frightened. Although
teaching Python is beyond the scope of this book, I put
together a list of great resources for it here

(e2eml.school/python resources.html). I also created a

course for brand new Python coders here
(e2eml.school /201) that covers a lot of the same ground,
working through tricks you can do with time, including
some simple games. I also try to keep my code as
learner friendly as possible. I aim for readability,
descriptive variable names, one operation per line, and
using the simplest approach I can get away with.

It runs on my machine

I’'m going to apologize in advance; I have not taken
steps to guarantee that my code will run for you.
Writing code that will run on any computer is a
gargantuan task. It becomes especially thorny when you

https://brandonrohrer.com/httyr2files
http://e2eml.school/python_resources.html
http://e2eml.school/201

How to Train Your Robot

start interacting with the world via pixels, microphones,
keyboards, networks-really any inputs and outputs.
Even when we stay within the confines of the computer,
different versions of Python, different versions of each
package, different operating systems, different versions
of the same operating system, and different processor
chipsets can all introduce their own subtle quirks into
how code is interpreted and what will run.

That said, I've tried to stack the deck in our favor by not
getting too fancy. I try not to do anything that requires
the latest version of Python or operating system-specific
behaviors, at least when I can avoid it. I try not to
require the latest, bleeding edge package versions or
recently released features. In fact, if there's anything we
can code up ourselves, I'll avoid relying on third-party
packages altogether. It’s possible that some of this code
won’t run on your computer, but I'll do what I can to
avoid that.

For reference, all these examples were written and run
on Python 3.8.10, under Ubuntu 20.04.5 LTS. Full
specifications of my machine are in an endnote” for
reference if you want to compare your setup.

If you're not already set up to run Python, I wrote some
bare-bones instructions for first time Python users under
Windows (e2eml.school/112) and under MacOS

http://e2eml.school/112

Keeping Time with Python

(e2eml.school /111). If you're a Linux user, then I'll leave
you to your own devices.

I have a strong opinion on development environments:
The best one is the one you're most comfortable with.
Please don’t let anyone waste your time by telling you
there’s one right way to do it or that you're doing it
wrong. Any combination of tools that lets you write
code, run it, and find the bugs in it is plenty for our
purposes. Test drive as many environments as you like
until you feel at home. It just so happens that my
comfort zone is writing code in the vim text editor and
executing at the command line. But the fact that my
favorite flavor of ice cream is burnt caramel grape nut
should have no bearing on yours. Find your flavor and
grab a spoon. If you really have no idea what to try first,
a lot of people rave about Visual Studio Code. It’s as
good a place as any to start.

Checking the Time

Every operating system has its own way to check the
time. Python hides all of this behind a single package,
appropriately named time.” No matter what operating
system you're using, you can check the system clock
with the time.time() function.

http://e2eml.school/111
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html#time.time

How to Train Your Robot

import time
current_unix_time = time.time()
print(current_unix_time)

00_unix_time.py

When run, the result is the current Unix time, a little
over 1.66 billion seconds.

$ python3 00_unix_time.py

1662637918.4849603

I could call a friend in Mumbai and if we both run this
code as I say "one, two, three, go!", we'll get answers
that differ only by the 150 ms it takes for my voice signal
to be digitized and hop there via satellite.

In its native form, Unix time is tough to interpret. If we
needed to pull out time of day to set a microwave clock,
we could do that with a little arithmetic.

Keeping Time with Python

import time

UTC offset for my local time

(US Eastern Daylight Time)

utc_offset_hours = -4

seconds_per_hour = 3600

seconds_per_day = seconds_per_hour * 24 # 86,400

unix_time = time.time()
utc_time_of_day_seconds = unix_time % seconds_per_day
utc_time_of_day_hours = (

utc_time_of_day_seconds / seconds_per_hour)
local_time_of_day_hours = (

utc_time_of_day_hours + utc_offset_hours)
local_hour = int(local_time_of_day_hours)

print("local hour:", local_hour)

01_time_hour.py

This code does two non-obvious things. The first is to
divide the Unix time by the number of seconds in a day
(86,000) and just keep the remainder. Shorthand for this
remainder-keeping operation is "modulo” and Python
uses the % operator for it. Thanks to the fact that Unix
time ignores leap seconds, Unix time modulo 86,400 will
always give seconds since midnight according to UTC.

Converting seconds to hours is straightforward, but
getting from UTC to my local timezone is a manual
lookup exercise®. I have to know that for my particular
location in Boston, USA the UTC offset is -5 hours, that

How to Train Your Robot

is, that the local time here lags UTC by an even five
hours. I also have to know that there is an additional +1
correction since we are currently on daylight savings
time. This is hard-coded into the variable

utc_offset_hours as -4.

With these two pieces in place, when I run this code I
can see that it is currently the 10am hour here.

$ python3 ©1_time_hour.py

local hour: 10

My friend in Mumbai would get a different result of
course. The UTC offset there is +5.5 and they don't
observe daylight savings. Luckily for us, we don't plan
to go any further into the mess that is resolving local
times and their differences across the globe. I'll save that
for braver people than me. We're going to explore in the
opposite direction—small events that happen very
nearby and very fast.

Keeping Time with Python

N el

But is it dinner time?

Timing your code

Modern processors compute at such blinding speed that
it often seems instantaneous, but that speed can
evaporate quickly when you start playing with
algorithms and fat data streams. When you bump up
against the limits of what your system can do, it
suddenly becomes very important to understand where
that time is going. Is it spent reading a file? Multiplying

How to Train Your Robot

arrays? Waiting for another process to return a result?
The only way to know for sure is to time your code.

We can repurpose our time.time() function for this. By
calling it immediately before and immediately after
some snippet of interest, we can take the difference of
the two to find the elapsed time.

import time
import numpy as np

n_iterations = 10000
total_execution_time = ©

for _ in range(n_iterations):
start_time = time.time()

Do some time consuming busywork computation
size_3D = (160, 100, 100)

random_array = np.random.sample(size=size_3D)
total = np.sum(random_array)

end_time = time.time()
elapsed_time = end_time - start_time
total_execution_time += elapsed_time

average_time = (
total_execution_time / n_iterations)
print(
"Average execution time:",
f"{average_time: .09} seconds")

02_code_timing.py

Keeping Time with Python

There's some variation from run to run, so to get a
robust estimate we can take a lot of measurements and
calculate the mean. For this particular code running on
my machine, the average execution time is about 6.55
milliseconds.

$ python3 82_code_timing.py

Average execution time: 0.00654980178 seconds

2500 A

2000 A

1500 A

Count

1000 A

500 A

[N ————————— T T TT R IR

0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.013
Elapsed time (seconds)

03_code_timing_distribution.py

How to Train Your Robot

Average execution time is a useful number, but it hides a
whole mess of complexity. If we run this again and plot
a histogram of all the 10,000 execution times, we can see
that most of them fall pretty close to the peak. But some
of them are much higher, almost double. The ticks along
the bottom show each individual measurement. we can
see that the top 10 fall above 10 ms. That’s one in 1000
measurements coming in at more than 150% of the
mean. That may not sound like a lot, but it illustrates an
underlying principle: every so often code execution will
take much longer than you expect. And I collected this
data on a lean system, operating way beneath its limits
without a lot of competing processes. It’s not
uncommon for these hiccups to reach several seconds on
some systems. The important lesson to take away from
this is that code execution times can have a very long
tail. However long you think they might take, they will
occasionally take even longer than that. Any code we
write involving time and timing will need to be able to
handle these long tail events.

Keeping Time with Python

800 -

600 -

Count

200 A

o - - =
(w0 |

O.O(I)58 0.0|060 0.0062 0.0064 0.0066 0.0068 0.0070
Elapsed time (seconds)

03_code_timing_distribution.py

There’s more we can learn from this plot. Zooming in on
the main cluster, some fascinating structure emerges.
There isn’t just a single peak in the distribution. Instead,
there are five of them. They are narrow and distinct.
They are equally spaced. The gaps between them are
approximately 0.2 milliseconds wide. And they are
arrayed in ascending order of height. A simple model
of random noise would result in one smooth peak, a
gentle hill that rises and falls with an apex not too far
from the mean. The intricate structure of this
distribution shows that the variation is anything but
random. Multiple, evenly spaced peaks betray some

How to Train Your Robot

mechanism at work behind the curtain. Fully explaining
each of these wiggles is beyond the scope of this chapter
(that’s author-speak for "I have no idea what’s going on
here"), and we don’t need to be able to track the motion
of every cog to describe the operation of the clockwork
mechanism as a whole. But if you find this type of
investigation interesting, I recommend the book Street
Coder’ by Sedat Kapanoglu. The author will introduce
you to the gears that mesh to create patterns like these.

You may be thinking "Wait! Checking the time is also a
process. How much time does that take?" I'm so glad
you asked.

We can time the time() function by taking our previous
code and stripping out the busywork computation.
What we're left with is how much time passes between
subsequent calls to time().

Keeping Time with Python

import time
import numpy as np

n_iterations = 10000

elapsed_times = np.zeros(n_iterations)

for i_iteration in range(n_iterations):
start_time = time.time()
end_time = time.time()
elapsed_time = end_time - start_time
elapsed_times[i_iteration] = elapsed_time

average_time_us = np.mean(elapsed_times) * 1e6
print(f"Average time: {average_time_us:.06} us")
for time in elapsed_times[:12]:

print(time * 1e6)

04_time_timing.py

Taking the mean of 100,000 instances, we find that the
average execution time for time.time() is 77
nanoseconds. 77 billionths of a second. This is very small
compared to the 6.55 ms we measured for our busywork
code, so it serves a nice check that we were safe to
ignore the cost of checking the time.

Inspecting the first dozen reported times reveals
something interesting. Most of them are zeros. And
those that aren’t zero are exactly 0.2384185791015625
microseconds (us).

How to Train Your Robot

$ python3 84_time_timing.py

Average time: 0.07689 us
.2384185791015625

.0

.0

.2384185791015625
.2384185791015625

O 0O ® ®O ®O O O OO OO
0O 0O 0O ® O

.2384185791015625

There is obviously something weird going on here. To
understand what, imagine a digital clock in the
dashboard of a car and a five-year-old in the back seat
eager to get home before their favorite show starts. She
asks what time it is every 15 seconds. Your sequence of
answers might be [3:47, 3:47, 3:47, 3:48, 3:48, 3:48, 3:48,
3:49, 3:49]. Your child, mentally calculating the elapsed
time between these answers, would come up with [0, 0,
1,0,0,0,1,0], a pattern very similar to what we are
seeing. This is induced by a discretization of time. For
the child in the car, time is discretized into one minute
intervals. In our case, it is 0.238 us intervals. We don’t

Keeping Time with Python

know why this is the case, but knowing that it's
happening is valuable.

The implication of working with discretized time is that
we can’t hope to measure anything with an accuracy
higher than half the discretization interval. If you tell the
child in the back seat that it's 3:49, she doesn't know
whether it's 3:49:00 or 3:49:59 or somewhere in between.
If she guesses 3:49:30, she'll be off by at most 30 seconds,
15 seconds on average.

For time differences, this error can be doubled. A time
difference is the result of two separate measurements,
and their errors compound. If I tell you I started my
workout at 11:13 and ended it at 11:23, that might mean
I started at 11:13:00 and ended at 11:23:59 (almost 11
minutes of cardio!), or at the other extreme it might
mean it was barely over 9 minutes. If you guess my
workout was 10 minutes long, your maximum possible
error is 60 seconds.

Similarly, for time discretized at 0.238 us, we can expect
time difference errors as as large as 0.238 us. In
measuring time.time() we cheated and measured the
same function 10,000 times. We were able to average the
coarsely discretized measurements to get an estimate
that is much finer than a single measurement would
allow. It is the same effect as timing a single code block
that consists of 10,000 calls to time(). The total 770 ms

How to Train Your Robot

this would take is far larger than the 0.238 us
discretization period, hiding its discretization error.

Even though we can use the trick of repetitive
measurement to get an accurate timing estimate, Python
doesn't want us to have to work that hard. For timing
code there is a better tool than time.time(), and that is
time.monotonic(). It references the monotonic clock we
described earlier. It doesn't give a fig about the wall
clock or Unix time or NTP. It starts sometime (usually
when you power up your computer) and starts counting
steadily. When we substitute a monotonic() call into our
previous code, this is what we get.

$ python3 85_monotonic_timing.py

Average time: 0.0732865 us
.2150190994143486
.12799864634871483
.08198549039661884
.08899951353669167
.0709842424839735
.07101334631443024
.07200287654995918
.07101334631443024
.07200287654995918
.06999471224844456

O 0O ®O ® ®O ®O O OO

The monotonic() function itself runs just a bit faster than
time(), 73 ns compared to 77 ns. But what is really

Keeping Time with Python

interesting here is that the zeros are gone. We are
nowhere near the discretization limit. Each
measurement appears to be fairly accurate on its own.

This lets us see cool patterns that weren't visible before.
For instance, notice how the first few measurements are
longer than the average. The very first one takes about
three times longer than the average. We wouldn't have
been able to pull this out from time () measurements,
when all we had was the mean. If we were so inclined
we could also look at how these individual execution
times are distributed and search for patterns and dig
into the stories behind them. With additional temporal
resolution comes great power. (Responsibility is
optional.)

There is actually an underlying discretization still,® but
while working with robots and their sensors in the
world, it will be so small that we won't have to consider
it. For our purposes, we have found a perfect timer.

Pausing your code

Sometimes you just need your code to sit still and do
nothing for a while. This brings us to what is possibly
the most boring function of all time: sleep(). It does
exactly what it sounds like. It puts your code down for a
little nap.

How to Train Your Robot

By now we know not to expect that anything
time-related is going to go exactly according to plan.
sleep() is no different. We can check how accurate it is
by telling it to sleep for 10 ms and then measuring how
long it actually sleeps.

import time
import numpy as np

n_iterations = 1000
sleep_duration = .01

sleep_times = np.zeros(n_iterations)

for i_iteration in range(n_iterations):
start_time = time.monotonic()
time.sleep(sleep_duration)
end_time = time.monotonic()
sleep_time = end_time - start_time
sleep_times[i_iteration] = sleep_time

average_time = np.mean(sleep_times)
print(
"Average sleep time:",
f"{average_time:.09} seconds")

06_sleep_timing.py

$ python3 86_sleep_timing.py

Average sleep time: 0.0102642315 seconds

Keeping Time with Python

As expected, the average sleep time is not precisely 10
ms. It's about 2.5% higher than what we asked for. The
picture gets even blurrier when we look at the
distribution of 10,000 different sleep(.81) requests.

80

60 -

Count

20 A

T

T T T
10.0 10.1 10.2 10.3 10.4 10.5
Actual time (ms)

07_sleep_timing_distribution.py

The first thing that jumps out is that all of the measured
sleep times are well above the requested 10 ms. This is a
feature of how sleep() is implemented in Python. It’s
guaranteed to sleep at least the time specified. But as we
can see here, it can go over by quite a bit. The median of
this distribution is pretty close to 10.4 ms, a full 4%
higher than the requested time.

How to Train Your Robot

Another thing we can see is that there’s not just a single
peak. There is a cluster of measurements down between
10.1 and 10.2, then another larger cluster up above 10.4.
If the overtime were consistent, we could correct for it
and increase the accuracy. But as it is, on any given call
to sleep for 10 ms, we don’t know if it’s going to sleep
for 10.1 or 10.4. It's nondeterministic with a significant
range.

When we dig a little more and see how this varies for
different durations of sleep, even more weirdness
emerges. This plot shows the median sleep time (not the
average) across many sleep durations.

0.6

0.5 L f'

Sleep overtime (ms)
o o
w +
| |
]
»
4
‘{
e ®

e

¥}
!
a

0.1
(e T g,

0.0

0.01 0.1 1.0 10.0 100.0
MNominal sleep() duration (ms)

08_sleep_overhead.py

Keeping Time with Python

The first thing that jumps out is that there is a lot of
structure here. If the overtime were due to some random
process, we might expect it to be either constant across
sleep durations or proportional to sleep duration. Either
way it would be a straight line. This shows neither of
those. To a first approximation it is stepwise constant
with jumps at around the .1 ms, .15 ms, and 1 ms
durations. The size of the jumps don’t follow any
obvious pattern. There’s also a steady climb that begins
at about 40 ms and seems to peak just below 100 ms.
And there seems to be quite a bit of variability in the 1 to
10 ms range.

At this point, we have two options for dealing with
Python's odd sleep behavior. The first is to create an
ever more intricate model of overtime, and explicitly
compensate for it. The other is to make sure that
whatever code we write doesn’t depend on sleep()
being highly accurate.

The first of these two options has a magnetic appeal.
Data such as this, with its intricate structure, is
practically screaming for an explanation and
mathematical representation. If you can resist the
temptation to craft a story explaining what’s going on
here, you are a stronger person than L.

How to Train Your Robot

However, we are going to exercise a great deal of
discipline and take the second of these options. We'll
invest in code that is immune to sleep()'s oddities. This
will prove to be a wise decision. It turns out that the
situation is even more complicated than what we’ve
shown. I've observed on my machine that sleep
overtime also depends on what else is running at the
moment. And the subtle differences I've observed on my
machine will be swamped by differences across different
hardware platforms and operating systems. Trying to
model away sleep overtime is a losing game. We won't
even try to play.

Before moving on, there is a secret third thing: we could
write our own hyper-accurate sleep function. Rather
than calling time.sleep(), we can write a custom sleep
function that brute force checks the clock over and over
again until the specified duration has passed.

def sleep(duration):
start = time.monotonic()
end = start + duration
while time.monotonic() < end:
pass

09_sleep_precise.py

When testing across the same range of durations, the
biggest thing that jumps out is that the y-axis is no

Keeping Time with Python

longer measured in milliseconds, but microseconds. For
the most part overtime is about 1000 times less with our
brute force method.

Sleep overtime (us)

T T
0.01 0.1 1.0 10.0 100.0
Nominal sleep() duration (ms)

09_sleep_precise.py

There’s also some interesting behavior where overtime
increases slightly up to and just past sleeps of 1 ms, then
increases dramatically at around the 10 ms point. I have
no idea why this might be. I suspect it's some type of
automatic throttling that goes on when the CPU clock
gets too many requests from the same process, but that
is only speculation. The best part is that the overtime is
still so small that we can ignore it. If we needed a sleep
function that is accurate to within about a microsecond,
we could have one. All it requires is for us to be willing

How to Train Your Robot

to spam our CPU's monotonic clock. This is a trick that
we'll squirrel away, just in case we need it in the future
or want to make conversation at parties.’”

[insert photo of Reign sleeping]
time.sleep = True

Pacing your code

sleep() on its own is only marginally useful for us
when working with robots. But we are going to apply it
to create a rhythmic timekeeper, a pacemaker for robot
code that needs to be executed on a fixed cadence and
behave on a predictable timeline.

The first step toward building this is making a

metronome.

Keeping Time with Python

import time

clock_freq_Hz = 2
clock_period = 1 / float(clock_freq_Hz)

test_duration = 10 # seconds
n_iterations = int(clock_freq_Hz * test_duration)

t0 = time.monotonic()
last_completed = t©

for i_iter in range(n_iterations):
end = t@ + (i_iter + 1) * clock_period
wait = end - time.monotonic()
if wait > @:
time.sleep(wait)

completed = time.monotonic()

duration = completed - last_completed
print(duration * 1000)

last_completed = completed

10_metronome.py

To kick things off, the metronome needs a pace to set,
clock_freq_Hz. In this code, we use 2 Hz and calculate a
clock_period to be 0.5 seconds (500ms). Then, the code
starts counting metronome ticks with i_iter.

How to Train Your Robot

For each tick, the code calculates
1. when the tick should end
2. what the current time is
3. the difference between the two

Then it waits as long as it needs to via a call to sleep().

The measured tick durations match our target of 500 ms
very nicely.

S python3 1@_metronome.py

500.85251999553293
499.75492199882865
500.24256703909487
499.7710359748453
499.94934001006186
500.05020102253184
500.1911209546961
499.7375410166569
500.29632402583957
499.922044982668
499.76122297812253
500.0822790316306
500.2248259843327

The deviations are all less than half a millisecond, within
a tenth of a percent of the nominal tick length. We can
definitely work with that. Letting the metronome run
longer and looking at the distribution of errors (how far
off the actual tick duration was from the ideal), we see a

Keeping Time with Python

gratifying peak at zero. The shoulders of the peak fall
mostly within plus-or-minus a tenth of a millisecond
and the maximum and minimum values are both off by
less than half a millisecond. This is in line with the
behavior of sleep() we explored a few pages ago. This
relatively small amount of jitter will be negligible for
our purposes: coordinating code that controls a robot
fumbling around in the world.

150 A

Count
=
o
o

50 A

T T T T

T
-0.4 -0.2 0.0 0.2 0.4
Error (ms)

11_metronome_errors.py

The central tendency of the tick durations is very close
to zero. The median is within a couple of microseconds
and the mean is a tenth of that.

How to Train Your Robot

$ python3 11_metronome_errors.py

Average error 0.00019090616767333758 ms
Median error -0.0018999970052419046 ms

The accuracy of our ticks is not an accident. It comes
from how we calculate the end target for each tick. This
is the magic line of code:

end = t0 + (i_iter + 1) * clock_period

It calculates the end of the current tick by adding up the
total time that should have passed since the beginning
of the first tick, that is, the number of ticks so far
multiplied by the nominal tick duration. That means
that even if there is a hiccup and one tick ends up taking
a lot longer than expected, the next will automatically
compensate for that.

Alternatively, it's also possible to look back just one tick,
to check when the previous tick completed and add the
nominal tick duration to that to find when the next tick
should end.

end = last_completed + clock_period

While this is not wrong, it's much less robust. If we
happen to have an abnormally long tick, the next will do
nothing to compensate for it. It will just pick up where

Keeping Time with Python

the last one left off. Even if the ticks are all consistent,
we're stuck with the fact that sleep() tends to run long.
This version of the metronome creates tick durations
that all fall above zero.

200 4

150 A

Count

100 ~

50 A

T
-0.4 -0.2 0.0 0.2 0.4
Error (ms)

11_metronome_errors.py

Their average and median are both measured in
hundreds of microseconds, rather than a singular or
fraction of a microsecond.

$ python3 11_metronome_errors.py

Average error 0.3257934350161398 ms
Median error 0.36869199836107113 ms

How to Train Your Robot

Even more problematic, these errors add up over time.
Given enough ticks of this metronome, even a small
average error will add up and cause drift away from the
ideal tick sequence. Positive errors result in a shift of the
metronome frequency. Two such metronomes, set at the
same frequency but running on separate computers, will
drift apart and end up counting different numbers of
ticks in a day.

Our approach of tying the end time of a tick back to the
beginning of tick zero avoids all of this. In fact, average
error will always approach zero if you let your
metronome run long enough, even with the noisiest and
most error prone sleep(). Two metronomes set to the
same frequency will always report the same number of
ticks in a day. Calculating tick end time in this way is a
small thing, but it introduces a robustness to the
performance of our code that will save us some
horrendous debugging experiences down the line.

A Pacemaker

At last, we get to put the pieces together to make a
rhythmic timekeeper for our code, a pacemaker that
helps it run not too fast and not too slow. When we have
multiple processes running in parallel, each overseeing
a different part of the robot's activities, it will be quite
useful to know that each is running according to its own

Keeping Time with Python

beat, and will continue to do so consistently until they
finish or fail.

To turn our metronome into a pacemaker, all we need to
do is to add a workload. Here, we run a stopwatch. The
code checks how much time has elapsed since the
beginning of tick zero and reports the seconds and
milliseconds.

How to Train Your Robot

import time

clock_freq_Hz = 4
clock_period = 1 / float(clock_freq_Hz)

test_duration = 10 # seconds
n_iterations = int(clock_freq_Hz * test_duration)

t0 = time.monotonic()
last_completed = t©

for i_iter in range(n_iterations):

elapsed = time.monotonic() - t@

seconds = int(elapsed)

milliseconds = int(elapsed * 1000) % 1000
print(f" {seconds}:{milliseconds:03}")

end = t0 + (i_iter + 1) * clock_period
wait = end - time.monotonic()
if wait > 0:
time.sleep(wait)
else:
print("We're running behind!")

completed = time.monotonic()
duration = completed - last_completed
last_completed = completed

12_pacemaker.py

Keeping Time with Python

Thanks to our carefully considered calculation of tick
duration, the result is rock solid and doesn't differ from
the ideal enough to register at all at the millisecond
level.

$ python3 12_pacemaker.py

0:000

1250
1500
1750
1000
1250
1500
1750
1000
1250
1500
1750
1000

W N NDNN=2 2@ 2@ 20000

How to Train Your Robot

If we run this by calculating tick end times from the end
of the previous tick we see more than 20 ms of deviation
over the course of a ten second run. Not very satisfying!
And possibly enough of a quirk to violate the

assumptions of code it might interact with in the future.

$ python3 12_pacemaker .py

1267
:518
1768
1019
1269
:519
1770

O© O O O 00 0O 0 .

The final piece we added was a check in each tick that it
finished its work in time. If the workload is too big, it
will take longer than what is allotted for the tick. In our
pacemaker nothing terrible happens—it just immediately
advances to the next tick and will fast forward through
as many ticks as necessary to get back on track. But if it's
important that our code runs within the tick duration, or
more concerning, if our workload is longer than the tick
duration every time and the code just gets later and
later, then this needs to be reported somewhere. The
print statement we added is a placeholder. In later
chapters we'll see how to log these too-long ticks and

Keeping Time with Python

raise large or repeated violations as exceptions to let our
process know something is really wrong.

What's next?

Time and pacemakers give us a solid base to start
working with more than one process. Multi-process
development is an exercise in choreography, and we
now have the synchronization tools we need to keep our
dancers from kicking each other in the head.

The next step is to practice creating these processes and
get them talking to each other. Inter-process message
passing is famously hard to get right and even harder to
debug. We're going to apply the same philosophy we
used to great effect here: Use the simplest tools we can
in the most robust way we can find. We want to give our
bugs minimal cover to hide.

How to Train Your Robot

Recap

You can count the cycles of any regular phenomenon to
keep time. Physics is very helpful here.

Unix time is a useful way to represent time in code. It is
(roughly) the number of seconds since the beginning of
1970.

Python's time.time() checks the Unix time. Beware time
zones and leap seconds.

time.monotonic() taps into an accurate monotonic clock
that works beautifully for timing code.

time.sleep() is conservative tool for pausing your code.
It never undersleeps, but always oversleeps just a bit.

These tools can be used to construct a pacemaker for
keeping repetitive code executing on a strict cadence.

Keeping Time with Python

time.sleep = True

How to Train Your Robot

Resources

1. There's an online Unix time converter that I refer to often for quick
conversions to and from.
https://www.epochconverter.com

2. My computer's specifications

Memory: 15.4 GiB

Processor: Intel® Core™ i7-8650U CPU @ 1.90GHz x 8
Graphics: Mesa Intel® UHD Graphics 620 (KBL GT2)
Disk Capacity: 512.1 GB

OS: Ubuntu 20.04.5 LTS, 64 bit

Lenovo Thinkpad T480 that I call Loki

Purchased September 2018

3. The documentation for Python's time module is excellent. I
referred to it numerous times while writing this.

httpss/ /d | 31 time.htm]

4. If you are doing the time zone lookup yourself, there's a slick
Wikipedia reference for that.
https:/ /en.wikipedia.org/wiki

5. Street Coder by Sedat Kapanoglu.
streetcoder.org

6. An engaging exploration of the granularity of reported time.
https:/ /shipilev.net/blog/2014/nanotrusting-nanotime

7. As I was writing this, the ever helpful Twitter Python community
informed me that new in Python 3.11 sleep() is about to become
much more accurate.

https://docs.python.org/3.11 /whatsnew /3.11. html#time

https://www.epochconverter.com/
https://docs.python.org/3/library/time.html
https://en.wikipedia.org/wiki/List_of_UTC_offsets
http://streetcoder.org
https://shipilev.net/blog/2014/nanotrusting-nanotime/
https://docs.python.org/3.11/whatsnew/3.11.html#time

Keeping Time with Python

About the Author

Robots made their way into Brandon's imagination
while he watched the theatrical release The Empire
Strikes Back as a child, and they never left. He went on
to study robots and their ways at MIT and has been
puzzling over them ever since. His lifetime goal is to
make a robot as smart as his Shih Tzu.

To see more of his work, visit brandonrohrer.com

http://brandonrohrer.com

